Flux-Splitting Schemes for Parabolic Problems
نویسنده
چکیده
To solve numerically boundary value problems for parabolic equations with mixed derivatives, the construction of difference schemes with prescribed quality faces essential difficulties. In parabolic problems, some possibilities are associated with the transition to a new formulation of the problem, where the fluxes (derivatives with respect to a spatial direction) are treated as unknown quantities. In this case, the original problem is rewritten in the form of a boundary value problem for the system of equations in the fluxes. This work deals with studying schemes with weights for parabolic equations written in the flux coordinates. Unconditionally stable flux locally one-dimensional schemes of the first and second order of approximation in time are constructed for parabolic equations without mixed derivatives. A peculiarity of the system of equations written in flux variables for equations with mixed derivatives is that there do exist coupled terms with time derivatives.
منابع مشابه
Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme
An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...
متن کاملThe numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting
Over the last ten years, robustness of schemes has raised an increasing interest among the CFD community. The objective of this article is to solve the quasi-one-dimensional compressible flow inside a “Shubin nozzle” and to investigate Bean-Warming and flux vector splitting methods for numerical solution of compressible flows. Two different conditions have been considered: first, there is a sup...
متن کاملFinite Difference Schemes with Cross Derivatives Correctors for Multidimensional Parabolic Systems
Abstract. We propose finite difference schemes for multidimensional quasilinear parabolic systems whose main feature is the introduction of correctors which control the second-order terms with mixed derivatives. We show that with these correctors the schemes inherit physically relevant properties present at the continuous level, such as the existence of invariant domains and/or the nonincrease ...
متن کاملStiff convergence of force-gradient operator splitting methods
We consider force-gradient, also called modified potential, operator splitting methods for problems with unbounded operators. We prove that force-gradient operator splitting schemes retain their classical orders of accuracy for time-dependent partial differential equations of parabolic or Schrödinger type, provided that the solution is sufficiently regular.
متن کاملA Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions
The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012